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Abstract— We describe how Markov chain analysis and graph 

theory concepts can be used together to efficiently analyze 

behavior of complex distributed systems. Specifically, the 

paper shows how minimal s-t cut sets can be used to identify 

state transitions in a graph of a piece-wise homogenous 

Markov chain, which if suitably perturbed, degrade the 

performance degradations in the system being modeled. Using 

a computing grid simulation as an example, the paper shows 

that this approach can be used to predict situations where 

performance degrades under different conditions. Preliminary 

experiments show this approach can be applied to problems of 

significant size. We conclude that the use of minimal s-t cut-

sets to perturb a Markov chain has potential for practical use 

in analyzing distributed systems behavior and describe how 

this might be done in support of real-time system monitoring. 

This approach has not previously been studied as a practical 

means for analyzing dynamic behavior in distributed systems. 

Keywords- piece-wise homogenous Discrete Time Markov 

chain; distributed system; minimal s-t cut set; system monitoring. 

I.  INTRODUCTION 

In large-scale, dynamic distributed systems, such as 
computing grids, the interactions of many independent 
components can lead to emergent system-wide behaviors 
with unforeseen, often detrimental, outcomes [1]. To ensure 
availability and reliability of computing services in such 
environments, system monitoring tools will be needed to 
rapidly assess trends and predict changes in system behavior 
caused by such factors as shifts in workload, modifications to 
system configurations, policy changes, or failures. 

In an earlier paper [2], we described a succinct Discrete 

Time Markov chain (DTMC) representation for analyzing 

dynamic behavior in distributed systems. To capture change 

in system behavior over time, the DTMC representation was 

made piecewise homogenous [3], in which a set of transition 

probability matrices (TPMs) modeled successive time 

periods. This differs from a conventional DTMC that is 

homogeneous, in which a TPM does not change over time.  

The TPM set could be perturbed by systematically changing 

the values of related state transition probabilities to examine 

alternative system execution paths and identify critical state 

transitions where perturbation most affected performance. 

The critical transitions could then be related to events such 

as failures, policy changes, and workload shifts, in order to 

predict the extent of performance decline caused by such 

events and to establish related performance thresholds. This 

initial approach however, required extensive computation, 

which slowed analysis.  
This paper extends [2] to use minimal s-t cut-sets [4] of a 

graph of a piecewise homogenous DTMC to rapidly identify 

critical state transitions, which when suitably perturbed, lead 

to large performance degradations. Use of minimal s-t cut 

sets, defined in Section IV, reduces the computation needed 

to find critical transitions, and can thus be applied to more 

complex problems than our initial approach. We show 

minimal s-t cut analysis can be efficiently used in grid 

system simulations with different durations and workloads, 

and that it can also find combinations of critical transitions 

that represent more complicated circumstances. For larger 

problems, we provide an algorithm for finding minimal s-t 

cut sets that can be bounded to run within reasonable time 

limits, and that is effective in identifying critical transitions 

in DTMCs with up to 50 states and 160 state transitions. We 

then discuss the potential use of these capabilities to predict 

performance degradations in support of real-time system 

monitoring. To our knowledge, the use of minimal s-t cut-

set analysis to perturb a piecewise homogenous DTMC has 

not previously been studied as a practical approach for 

analysis of dynamic behavior in distributed systems.  
This paper is organized as follows. Section II discusses 

related work on using Markov chains to analyze dynamic 
systems. Section III summarizes the DTMC for the grid 
system [2] used here. Section IV defines minimal s-t cut sets 
and describes how they are used to find critical transitions in 
a DTMC. Section V describes an algorithm for computing 
minimal s-t cut sets in large Markov chain graphs and 
analyzes its performance. Section VI discusses potential use 
of minimal s-t cut set analysis to monitor real-time systems. 
The last sections outline future work and conclude. 

II. RELATED WORK 

The method discussed here should be distinguished from 

the well-known use of DTMCs for providing quantitative 

measures of system performance and reliability, reviewed in 

[2, 5]. Of this work, perhaps most closely related are [6, 7], 

where a control loop is employed to mitigate network delay 

and a Markov chain model is used to represent and measure 



delay. Instead of measuring reliability, we use DTMCs to 

examine alternative execution paths in dynamic systems and 

identify scenarios where performance degrades.  

Both perturbation analysis and graph theory have 

previously been applied to DTMCs, but for different 

purposes than we intend. Perturbation analysis of DTMCs 

has been the topic of theoretical [8-10] and computational 

study [11, 12]. Other researchers [13-15] have used system 

performance gradients that are based on key decision 

parameters to perturb Markov models. While gradient-based 

approaches demonstrated potential in modeling performance 

change, some issues involving computation of gradients 

required further research [15]. Also, gradient-based 

approaches seem geared for system optimization, rather than 

for examining alternative execution paths and identifying 

situations in which performance degrades.  
Graph-theoretic methods have also been used previously 

to study dynamic behavior in Markov chain models. For 
example, graph decomposition has been used to calculate 
stationary probability distribution vectors of Markov chains 
[16-18] as well as to measure how perturbation affects 
stationary distributions [19]. Minimal cut set analysis has 
been used on topology graphs of avionics system 
components to identify the shortest sequence of component 
failures [20]. However, the combined use of minimal s-t cut 
sets and a piecewise homogenous DTMC representation has 
not previously been studied as an approach for analysis of 
distributed systems behavior. Finally, there are maximum-
flow algorithms [21-23], well-known graph-theoretic 
methods that find s-t cut sets on the basis of flow levels. 
These algorithms could potentially be used to identify critical 
state transitions. However, because these algorithms use 
flows, they are distinguishable from Markov chain 
approaches and so best merit separate investigation. 

III. THE DISCRETE TIME MARKOV CHAIN MODEL  

The DTMC model of a grid system was developed by 
observing a large-scale grid computing simulation [1]. This 
section overviews this model, with full details in [2]. The 
DTMC grid model simulates the progress of a large number 
of computing tasks from the time they are submitted to the 
grid for execution to the time they either complete or fail. 
Fig. 1 shows a state diagram of this system, which describes 
the lifecycle of a single task. This model has 7 states: an 
Initial state, where a task remains prior to submission; a 
Discovering state, during which service discovery directories 
are accessed to locate grid service providers to execute the 
task; a Negotiating state during which a Service Level 
Agreement for task execution is negotiated with discovered 
providers; a Waiting state where tasks reside that are 
temporarily unsuccessful in discovery or negotiation; and a 
Monitoring phase in which a task is executed by a contracted 
provider before a deadline. Transitions between states, 
shown in Fig. 1 by arrows, represent actions taken by the 
grid system to process a task. All tasks eventually enter 
either the Tasks Completed or Tasks Failed state, which are 
the absorbing states of the Markov chain, because once 

entered, a task cannot leave. A Markov chain with these 
characteristics is called an absorbing chain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  State model of grid computing system.  

   The large-scale grid simulation was observed over 
extended durations to accumulate frequencies for the state 
transitions shown in Fig. 1, compute transition probabilities, 
and form TPMs. Separate observations were made to create 
two cases: (a) one in which the system executes for 8 hours 
with varying workload; and (b) a 640 hour execution that 
reaches near steady state. To create piece-wise homogenous 
representations for the two cases, the total duration of each 
was divided into equal periods of 7200 s and a TPM was 
computed for each period. Fig. 2 shows the summary TPMs 
for the two cases, which are weighted averages of their 
respective time period TPMs and in which weights are based 
on the relative number of transitions in each period. 
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Figure 2.  (a, b) Summary TPMs for the grid system over (a) 8 and (b) 640 

hour durations. The summary TPMs are weighted averages of their 
component time period TPMs, in which the weight of each TPM is 

determined by the relative number of transitions in the related time period.  
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To simulate system behavior over time, a well-known 
DTMC method was employed in which multiplication of the 
time period TPMs is used to advance the system state in 
discrete time steps. Fig. 3 shows that this process, referred to 
in this paper as Markov simulation, closely approximates the 
performance of a large-scale simulation in the two cases. 
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Figure 3.  Performance of Markov chain and large-scale simulations as 

measured by Tasks Completed for the grid system over (a) 8 hours (5 time 

period TPMs and 421 time steps, including an extra cleanup period), and 

(b) 640 hours (steps 321 time period TPMs and  27000 time steps with 
cleanup). A time period represents 7200s and a  time step represents 85 s. 

     To identify critical state transitions, we described a 

perturbation algorithm in [2], which systematically changes 

values of combinations of related state transition 

probabilities in a piecewise homogenous DTMC and 

evaluates alternative system executions using Markov 

simulation. The algorithm identifies those combinations that 

degrade system performance. The algorithm can be applied 

to all rows (states) to exhaustively perturb a TPM and reveal 

individual critical state transitions where perturbation causes 

system performance to fall. The algorithm replicates (with 

good agreement) scenarios in which performance drastically 

degrades in a large-scale grid simulation [1].  

      Fig. 4 provides an example of a critical state transition, 

Negotiating  Monitoring, identified by the perturbation 

algorithm. The figure shows the impact of a set of related 

perturbations in which lowering the probability of transition 

to 0 for Negotiating  Monitoring causes the proportion of 

Tasks Completed to fall to 0 in the Markov simulation (blue 

curves). The figure also shows the result of the large-scale 

grid simulation (red curve), which was altered to 

deliberately fail negotiations. The Markov simulation curve 

shows a similar threshold and sharp drop in Tasks 

Completed as does the large-scale simulation. Though the 

computational cost of the perturbation algorithm prohibits 

use on large problems, it provides a comparative basis to 

assess the results of minimal s-t cut-set analysis. 

 

 

 
 
 
 
 
 
 
 
 

Figure 4.  Perturbation of Negotiating State to reduce the probability of 

transition from Negotiating  Monitoring while raising the probability of 
transition from Negotiating to Waiting in the 640 hour case. The blue curve 

shows the proportion of Tasks Completed produced by the perturbation 

algorithm. Large-scale simulation results are denoted by red triangles. 

IV. MINIMAL S-T CUT SET ANALYSIS IN A 

MARKOV CHAIN MODEL 

This section describes how identifying minimal s-t cut 
sets on paths between an Initial state and a desired absorbing 
state can be used to identify critical state transitions in a 
DTMC, which if perturbed, lead to system performance 
degradations. In contrast to the perturbation algorithm, which 
can identify only single state transitions that are critical, 
minimal s-t cut set analysis identifies combinations of critical 
state transitions, an important benefit for analysis of more 
complex problems. In Section V, we describe an algorithm 
for finding minimal s-t cut sets and show its effectiveness for 
large problems. We note that this approach does not use flow 
levels to define minimality, but instead uses cardinality and 
other factors discussed below 

A. Definitions 

In graph theory, a graph G (V, E) consists of a set of 

vertices V connected by edges from the set E. A directed 

graph is a graph in which edges can be traversed in only one 

direction. It is easy to see that a Markov chain is a directed 

graph, in which vertices correspond to states and directed 

edges correspond to state transitions. A directed path 

through this graph is a sequence of state transitions from 

one state to another. In this problem, the directed paths of 

most interest are non-cyclic paths that lead from the Initial 

state to one of the two absorbing states: Tasks Completed or 

Tasks Failed.  This paper considers only paths to Tasks 

Completed. Fig. 5 shows two such paths. 
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Figure 5.  There are 2 directed paths (in red) from the Initial State to Tasks 

Completed, labeled 1 and 2. Three single-transition s-t cuts (minimal s-t cut 
sets consiting of one state transition) are marked by single bars. Two 

multiple transition s-t cuts (s-t cut sets with two transitions each) are 

marked by double bars: (a) Discovering  Negotiating and Discovering  
Waiting; and (b) Discovering  Negotiating and Waiting  Negotiating. 

Trap states are denoted by T. 

A set of one or more edges, which if removed, 

disconnects all paths between two vertices s and t is referred 

to as an s-t cut set [4]. An s-t cut set is a minimal s-t cut set 

if removal of any edge from the cut set reconnects s and t. 

By finding minimal s-t cut sets consisting of state transitions 

that disconnect the Initial and Tasks Completed states, it is 

possible to know where reducing the related transition 

probabilities to 0 can halt the progress of tasks to 

completion. In this paper, minimal s-t cut sets with a single 

member will be referred to as single-transition s-t cuts, 

while those with more than one member are multiple-

transition s-t cuts.  State transitions that are members of a 

minimal s-t cut set are critical state transitions. 

B. Identifying Minimal s-t Cut Sets in the Grid Markov 

Chain Model 

In Fig. 5, there are 3 single-transition s-t cuts: Initial  

Discovering, Negotiating  Monitoring, and Monitoring  

Tasks Completed. Fig. 4 has shown that reducing the 

probability of transition for Negotiating  Monitoring to 0 

using Markov simulation causes the proportion of tasks 

reaching Tasks Completed to drop to 0. The same result 

occurs when the other two single-transition s-t cuts, Initial 

 Discovering and Monitoring  Tasks Completed, are 

similarly perturbed (see [2]). Exhaustive use of the 

perturbation algorithm confirms that the 3 single-transition 

s-t cuts identify state transitions, which if reduced to 0, 

cause the proportion of tasks reaching the Tasks Completed 

state to fall to 0 (see Sec. V). These 3 single-transition s-t 

cuts are critical state transitions that are clearly related to 

critical steps in allocating resources to, and executing, tasks. 

Fig. 5 also shows two multiple-transition s-t cuts, labeled (a) 

and (b), which disconnect all paths between the Initial from 

the Tasks Completed state. Both multiple transition cuts 

have two transitions. In a multiple-transition s-t cut, 

lowering transition probabilities to 0 of all transitions in the 

cut set reduces the proportion of Tasks Completed to 0. 

Multiple-transition s-t cuts identify situations where a 

combination of state transitions is critical and together 

points to circumstances that degrade system performance. 

We return to multiple-transition s-t cuts in Section V. 

C. Identifying Trap States 

The previous discussion considered only state transitions 

between different states. However, in a DTMC, a state may 

also transition to itself in the next discrete time step and 

remain in the same state. In this paper, this is referred to as a 

self-transition. If a self-transition probability is near 1, the 

task may stay in the state for a long time. Such a state 

effectively becomes a trap state. Fig. 6 shows an example of 

how a trap state affects performance, when the self-

transition probability of the Discovering state is raised to 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Perturbation of Discovering to increase the self-transition 

probability to 1 while decreasing the probability of transition from 

Discovering to other states to 0 in 640 hour case. The blue curve shows the 

proportion of Tasks Completed produced by the perturbation algorithm. 
Values from the large-scale simulation are shown by red triangles. 

Tasks are thus stalled in Discovering, so that they cannot 

proceed to other states and complete by their deadlines. The 

evolution of Discovering into a trap state may indicate 

failure of the service discovery function in a real-world 

scenario. A trap states is distinguished from a permanent 

absorbing state, which always has a self-transition 

probability of 1, while the self-transition probability of a 

trap state varies. The concept of an s-t cut set can be 

extended to include vertices whose removal cuts all paths 

from s to t. A minimal set of such elements (edges and 

vertices) is a minimal s-t separating set [24]. We leave 

minimal s-t separating sets for potential future work. 

V. PERFORMANCE OF MINIMAL S-T CUT SET ANALYSIS 

This section shows that minimal s-t cut set analysis is an 

effective and efficient means of finding critical state 

transitions and trap states. The section also shows the 

potential applicability of this approach to large problems. 

Section V(A) first describes a well-known algorithm, known 

as the node contraction algorithm, which we adapted to find 
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minimal s-t cut sets in a directed graph. The node 

contraction algorithm is probabilistic [25], in that can find 

solutions with a probability which can be increased to a high 

level by repeatedly executing the algorithm. Though it is not 

guaranteed to find all minimal s-t cut sets, the computational 

cost of node contraction can be bounded, making it 

potentially applicable to large problems where the 

perturbation algorithm and other exhaustive methods would 

be infeasible. The node contraction algorithm also finds 

critical transitions that are part of multiple transition s-t cuts, 

which the perturbation algorithm cannot find.  

   Section V(B) shows effectiveness and efficiency of node 

contraction for the grid system problem. Here, the node 

contraction algorithm finds all individual critical transitions 

and trap states that were found using the perturbation 

algorithm, but at far less cost. Section V(C) then reports 

experiments on the use of node contraction for finding 

critical state transitions in large Markov chain problems. To 

do this, the performance of the node contraction algorithm is 

tested by comparing it to the performance of an algorithm 

[26] that, unlike node contraction, enumerates all minimal s-

t cut sets in a directed graph, and thus finds all critical 

transitions. While, like other algorithms of this type, the 

time complexity of [26] prohibits practical use on many 

large problems, the algorithm provides a good baseline for 

testing. (This complexity is O |E| for each s-t cut set that 

exists, where |E| is the number of edges in the graph [26]). 

To examine the potential for scalability of minimal s-t cut 

set analysis, we wish to know what proportion of minimal s-

t cut sets (and thus critical transitions) can be found by node 

contraction in large problems and its computational cost. 

A.   Overview of the Node Contraction Algorithm  

In this section, we summarize our implementation of the 
node contraction algorithm, with pseudo-code in [5]. Though 
the time complexity of node contraction algorithms for 
directed graphs has not been studied, efficient versions of 
this algorithm for undirected graphs find a minimum cut with 
a complexity of O |V|

2
], where |V| is the number of vertices in 

the graph [25]. While this cost is significant, the algorithm 
can be used on large problems by controlling the number of 
executions, as will be discussed in Section V(C).  

The node contraction algorithm operates by randomly 

choosing two vertices connected by an edge and replacing 

these vertices with a single, new vertex. The new vertex 

assumes the edges by which the two replaced vertices were 

connected to the remainder of the graph (i.e., the edges of 

replaced vertices become the edges of the new vertex) and 

takes up the edges that connected the two replaced vertices. 

The result of each contraction is recorded. The process of 

randomly selecting pairs of vertices repeats until only two 

large, mega-vertices remain. The directed edges between the 

two remaining mega-vertices c1 and c2, and the directed 

edges between vertices <v1, v2>, v1≠ v2, in which v1 was 

replaced by c1 and v2 was replaced by c2, constitute a 

minimal s-t cut set of the graph. The node contraction 

algorithm was modified for an absorbing Markov chain 

problem to prevent the two vertices representing the Initial 

state, s, and the Tasks Completed absorbing state, t, from 

being contracted into the same vertex. This ensures that the 

Initial state, s, and Tasks Completed state, t, will not both 

end up in either c1 or c2. In this way, the edges between the 

two remaining mega-vertices, c1 and c2, together with the 

vertices each has absorbed, yield a minimal s-t cut set of 

state transitions, which if removed, disconnect the Initial 

and absorbing state (Tasks Completed).  

Since the algorithm randomly selects two connected 

vertices to combine, repeated applications produce different 

cut sets. The more the algorithm is repeated, the greater the 

chances that a large proportion, if not all, of the minimal s-t 

cut sets of interest will be obtained. Hence, the operation of 

the algorithm can be said to be probabilistic. Because the 

number of repetitions can be controlled, computation cost 

can be bounded. Further, cut sets can identify potential trap 

states, which exist when all transitions in the cut set emanate 

from the same state. Markov simulation then need be 

applied only to the transitions in the s-t cut sets, in order to 

generate curves of tasks completed, such as are shown in 

Figs. 4 and 6, and to identify performance thresholds. 

B. Comparing the Perturbation AlgorithmWith Minimal s-

t  Cut Set Analysis Using Node Contraction 

Table I compares the result of applying the perturbation 

algorithm described in Section III with the result of minimal 

s-t cut set analysis using node contraction, when both are 

used to identify individual critical state transitions and trap 

states. The perturbation algorithm was applied to the 5 rows 

representing non-absorbing states (labeled a-e) for each time 

period TPM in both the 8 and 640 hour cases. The 

combinations of row elements representing the probability 

of transition being decreased and increased appear in the 2 

leftmost columns. For each such combination of transitions, 

the next two columns show the proportion of Tasks 

Completed for the 8 and 640 hour cases as the probability of 

the state transition being decreased falls to 0. The rightmost 

column indicates if the state transition being reduced 

corresponds to a single-transition s-t cut.  

Table I shows that all combinations where perturbation 

caused a decline in the proportion in Tasks Completed that 

fell to 0 corresponded to single-transition s-t cuts. There are 

7 such combinations, and all correspond to single-transition 

s-t cuts that are verified by large-scale simulation. In no 

case, did node contraction find an s-t cut that did not 

correspond to such a drastic reduction. For instance, in 

Table I(c), rows 10-12, when the probability of transition 

from the Negotiating state to Monitoring (i.e. Negotiating 

 Monitoring) is reduced to 0, the proportion of Tasks 

Completed falls to 0. This is shown in Fig. 4. Fig. 5 shows 

that Negotiating  Monitoring is a single-transition s-t cut.  

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that in Table I(d), row 3, reducing the probability of 

Monitoring self-transition while raising the probability of 

Monitoring  Negotiating also caused a severe decline in 

the proportion of Tasks Completed. This happens because 

the probability of transition for Monitoring  Tasks 

Completed is very low (see Fig. 2), and so the probability of 

Monitoring self-transition must be very high to ensure tasks 

remain in the Monitoring state long enough to eventually 

transition to Tasks Completed. Thus, reducing the 

probability of Monitoring self-transition to 0 while raising 

the transition probability of Monitoring  Negotiating 

prevents tasks from reaching Tasks Completed—and acts 

like a single-transition s-t cut on Monitoring  Tasks 

Completed. However, because the transition probability of 

Monitoring  Tasks Completed is not lowered to 0 in this 

perturbation, some tasks complete. The table also contains 

rows that show only partial reductions (Table I (a), rows 5-

6, and Table I (b), row 5). These correspond to the state 

transitions in the two multiple transition s-t cuts in Fig. 5, 

which were identified by node contraction, but could not be 

identified by the perturbation algorithm of Section III. 
The perturbation algorithm was also applied to raise the 

self-transition probability of the 5 non-absorbing states in the 
grid model to 1. This perturbation caused the proportion of 
Tasks Completed to decline to 0 when applied to 4 of these 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In Fig. 5, corresponds to single-transition s-t cuts for  
aNegotiating to Monitoring  
bMonitoring to Tasks Completed  
cInitial to Discovering 
 
*Note explanation in text on this page below for (d), row 5.  

 

states: Initial, Discovering, Negotiating, and Monitoring 

states. All 4 are trap states found through node contraction. 

The fifth state, Waiting, is not a trap state; but is part of a 

state transition that is a member of the two multiple-

transition s-t cuts in Fig. 5. Hence, if the self-transition 

probability of Waiting is raised to 1, there is only a partial 

downward effect on the proportion of task completions.                                                           

Executing the exhaustive perturbation algorithm on non-

absorbing rows of the grid model took 56 minutes in the 8 

hour case and 4.5 hours in the 640 hour case. In comparison, 

node contraction needed less than 0.01 s to find all minimal 

s-t cut sets and trap states. In the 8 hour case, generating 

Markov simulation curves to reduce the proportion of Tasks 

Completed to 0 for the minimal s-t cut sets and trap states 

required 244 s, or 7 % of the 56 minutes needed by the 

perturbation algorithm. In the 640 hour case, these same 

computations took 230 s, or 1.4 % of the 4.5 hours needed 

by the perturbation algorithm. Thus, minimal s-t cut set 

analysis yielded two orders of magnitude improvement in 

run time over exhaustive application of the perturbation 

algorithm. All experiments were executed on a Dell 

PowerEdge 6950 with quad, dual-core 3.0GHz processors 

and 32GB memory, running under Windows 2003.  

(c) r = Negotiating

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.985 0.938 No
3 Waiting Monitoring 1.000 0.939 No
4 Discovering Waiting 0.954 0.935 No
5 Discovering Negotiating 0.957 0.935 No
6 Discovering Monitoring 0.967 0.936 No
7 Negotiating Waiting 0.923 0.931 No
8 Negotiating Discovering 0.941 0.933 No
9 Negotiating Monitoring 0.988 0.938 No
10 Monitoring Waiting 0.000 0.000 Yesa

11 Monitoring Discovering 0.000 0.000 Yesa

12 Monitoring Negotiating 0.000 0.000 Yesa

(a)  row = Discovering

Element 
reduced0

Element 
raised

Proportion of 
Tasks Complete

s-t cut 
exists

8-hour 640-hour

1 Waiting Discovering 0.957 0.935 No
2 Waiting Negotiating 0.959 0.935 No
3 Discovering Waiting 0.939 0.935 No
4 Discovering Negotiating 0.963 0.935 No
5 Negotiating Waiting 0.894 0.933 No
6 Negotiating Discovering 0.651 0.932 No

(d)  row = Monitoring

1 Negotiating Monitoring 0.982 0.937 No
2 Negotiating Tasks Comp 0.982 0.938 No
3 Monitoring Negotiating 0.028 0.186 Yesb *

4 Monitoring Tasks Comp 0.980 0.949 No
5 Tasks Comp Negotiating 0.001 0.006 Yesb

6 Tasks Comp Monitoring 0.002 0.016 Yesb

(b)  row = Waiting

Element 
reduced0

Element 
raised

Proportion of 
Tasks Complete

s-t cut 
exists

8-hour 640-hour

1 Waiting Discovering 0.974 0.937 No
2 Waiting Negotiating 0.981 0.939 No
3 Discovering Waiting 0.937 0.934 No
4 Discovering Negotiating 0.963 0.936 No
5 Negotiating Waiting 0.818 0.843 No
6 Negotiating Discovering 0.939 0.932 No

(e)  row = Initial

1 Discovering Initial 0 0 Yesc

2 Initial Discovering 0.970 0.988 No

TABLE I.  Comparison of results of applying the perturbation algorithm to completely perturb all rows of the TPMs for 8 and 640 hour cases and 

existing single-transition s-t cuts found by the node contraction algorithm. Perturbations verified by altering the large-scale grid system simultion 

are bolded and shaded.  

 



C. Using Node Contraction to Find Minimal s-t Cut Sets in 

Large Problems 

This section reports the results of experiments on the use 

of the node contraction algorithm to find critical transitions 

in large, complex Markov chain models with many multiple 

transition minimal s-t cuts. These experiments compare the 

results of using the contraction algorithm to the results 

produced by the enumeration algorithm of [26] which is 

guaranteed to find all minimal s-t cut sets and the critical 

transitions that these cut sets contain. Here, the criticality of 

transitions is estimated using measures we define for these 

experiments. The results show that, with some exceptions, 

the node contraction algorithm found a large proportion of 

the most critical cut sets in two orders of magnitude less 

time than did exhaustive enumeration. While further 

experiments are needed, these preliminary investigations 

suggest that minimal s-t cut set analysis can effectively 

identify critical transitions in large, complex Markov chain 

graphs as might be encountered in real-world problems.  

 

1) Experimenal Design: To perform these experiments, 

four Markov chain models were selected, each consisting of 

40 or 50 states, from [27-29] and single time-period TPMs 

were generated using [30]. All four problems were 

originally ergodic chains, which were suitably modified to 

be absorbing chains. Though the matrices were sparse, these 

problems were large and complex, with a very sizable 

number of minimal s-t cut sets (> 4×10
8
 for the largest) 

between the Initial and absorbing states. (See Table 2.) In 

contrast to the grid system model, minimal s-t cut sets for 

these problems consisted of multiple state transitions, which 

could correspond to combinations of circumstances that 

impact system performance. In [5], a complete description 

of these four Markov chain problems is provided, which 

must be omitted here due to space limitations. 

 
TABLE II.  Comparison of minimal s-t cut sets generated by the 

enumeration algorithm of [26] and by the node contraction algorithm. At 

10,000 repetitions the node contraction generated 77.2 % (variance 555.2) 
of the top 100 ranked cut sets in 0.14 % of the time for Sorts A-C. At 

100,000 repetitions, node contraction generated 91.4 % (variance 432.0) of 

the cut sets found by enumeration in 1.3 % of the time.   

  

 

 

 

 

 

 

 

 

 

 

 

To provide a baseline measure for the number of minimal 

s-t cut sets in these Markov chain graphs, the minimal s-t 

cut set enumeration algorithm of [26] was implemented, 

which lists all cut sets. To determine which minimal s-t cut 

sets were most critical, ranking criteria were selected based 

on the idea that the most critical cut sets will have a small 

number of state transitions. We chose this basis, because 

fewer transitions represent smaller combinations of 

circumstances that are more likely to occur and thus more 

likely to impact a system. (Note: this intuition is supported 

in the case of undirected graphs in [31] by the finding that 

small cut sets are more likely to disconnect undirected 

graphs, if edges of the graph that fail independently with a 

known probability.) We used this basis to choose 3 ranking 

criteria. The first criterion, Sort A, ranks minimal s-t cut sets 

by the fewest number of edges as the primary sorting 

criterion and lowest total transition probability of edges as 

the secondary criterion. The second, Sort B, uses only the 

lowest total transition probability of edges in the cut set as a 

sorting criterion (which also tends to rank cut sets with 

fewer transitions higher). Hence, Sorts A and B are likely to 

identify minimal s-t cut sets in which smaller perturbations 

to the fewest number of state transitions are likely to 

produce the largest changes. The third ranking criterion, 

Sort C, uses least number of edges as a primary sorting 

criterion and highest total transition probability of edges as a 

secondary criterion. Sort C identifies cut sets consisting of 

state transitions that are more likely to be taken and 

therefore, if perturbed, could affect system behavior. 

 

2) Experimental Results: We applied the node 

contraction algorithm and the enumeration algorithm of [26] 

to the four TPMs, ranked the minimal cut sets produced by 

each using the ranking criteria described above, and 

compared the results to determine the proportion of most 

highly ranked cut sets that the node contraction algorithm 

could find. With the exception of Matrix 1, Table II shows 

that, with 100,000 repetitions, node contraction generated 

91.4 % of the top 100 ranked cut sets that were generated by 

the enumeration algorithm for all four TPMs under all three 

sorting criteria. The contracton algorithm produced these 

results in 1.3 % of the time needed by enumeration. This 

amounts to a two-order of magnitude improvement in time. 

For instance, for Matrices 2 and 3, the algorithm was able to 

find almost all top 100 minimal s-t cut sets in a relatively 

small fraction of the number of hours required by the 

enumeration algorithm. For matrix 4, the node contraction 

algorithm could find all the top 100 under sort criteria B and 

C in about 15 minutes (as opposed to 156.1 hours through 

enumeration). Here, node contraction was successful despite 

the fact that Matrix 4 has over 4 ×10
8
 minimal s-t cut sets. 

However, in Matrix 4, the algorithm found only 37 of 100 

high ranked minimal s-t cut sets under Sort A. Also, for 

Matrix 1, Table II shows that the node contraction algorithm 

Minimal s-t 
cut set 
enumeration

Proportion (in %) of 100 top-ranked minimal s-t 
cut sets ranked by criteria A, B that were found by 
the node contraction algorithm

Number 
of cut 
sets

Time
in 
hours

After 10,000 repetitions After 100,000 repetitions

Time Sort A Sort B Sort C Time Sort A Sort B Sort C

1 50 530,432 332 s 640 s 80 100 96 --- --- --- ---

2 50 28,230,288 21.6 171 s 93 98 65 1710 s 99 100 99

3 50 27,242,634 36.0  218 s 67 100 100 2288 s 88 100 100

4 40 422,060,801 193.6 106 s 30 80 62 1051 s 37 100 100

N
u

m
b

er

O
rd

er



had to run longer than the enumeration algorithm, before it 

began to produce a large percentage of highly-ranked cut 

sets. This difference in performance may also be attributable 

in part to topological characteristics such as vertices (states) 

with large numbers of edges (state transitions), which 

increases vertex interconnectivity and impedes the 

contraction process. This exception suggests that in some 

cases where TPMs are small, it may be more efficient to 

enumerate cut sets than to generate them probabilistically. 

Despite these exceptions, the data shows that the node 

contraction algorithm can be used to find a high proportion 

of minimal s-t cut sets representing combinations of critical 

state transitions in larger Markov chains within reasonable 

time limits. 

VI. USING A MARKOV CHAIN COMPONENT TO SUPPORT 

MONITORING OF A DISTRIBUTED SYSTEM  

Using the grid system example, it is possible to envision 

a monitoring system organized as a real-time feedback 

control loop, in which a Markov chain analysis component 

with the capabilities described above runs as an on-demand 

background process. Such a Markov component might 

interact with a decision module and lower-level sensors as 

outlined below and depicted in Fig. 7. 

To provide data for the Markov component, embedded 

sensors first record activity in the grid system about events 

such as negotiated service agreements and task completions, 

and forward the data to a sensor monitor. The monitor maps 

this sensor data to state transitions, and periodically sends 

this information to a TPM set computation module. The 

module uses this information to re-compute transition 

probabilities and update a TPM set for a piecewise 

homogenous representation, which is maintained to allow 

access by both the Markov component and decision module.  

The Markov component may be activated either on a 

regular basis by the decision module or externally when 

design changes and other significant events occur. The 

Markov component maintains an updatable DTMC graph 

representation of the grid system. When activated, the 

Markov component obtains the most recent TPM 

information from the TPM set computation module. The 

Markov component then computes minimal s-t cut sets 

between the Initial and Task Completed states, and identifies 

critical state transitions and trap states. It also calculates 

threshold values for critical transitions and trap states, which 

when exceeded, indicate impending performance collapses 

(as in Figs. 4 and 6). The Markov component sends the 

results of its computations to the decision module. 

The decision module also periodically obtains updated 

TPM information from the TPM computation module and 

matches this information to the critical transitions and trap 

states that were supplied by the Markov component. If, over 

time, the decision module observes a downward trend in the 

value of transition probabilities for critical transitions that 

exceeds a threshold, or a similar rise in the self-transition 

frequency of a trap state, it takes corrective action or notifies 

affected parties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Use of  a Markov chain analysis component in monitoring a 

distributed system. Thick solid arrows indicate control, while thin dashed 

arrows show data flow. 

   For example, suppose that over time the decision module 

receives updated TPM information which shows that the 

probability of self-transition to Discovering is increasing. 

This trend may reflect a partial failure of service discovery 

directories, which is prolonging discovery activity and 

causing tasks to stall in the Discovering state. As the trend 

worsens and the self-transition probability reaches a 

threshold, the decision module may initiate diagnostic 

procedures targeted to the service discovery function and 

notify a human operator. Note that the responsiveness of the 

self-management component is not impaired by the 

background Markov process, which itself does not operate 

in real time. 

VII. CONCLUSIONS AND FUTURE WORK 

This paper has shown that the identification of minimal s-

t cut sets on paths from the initial to the absorbing state can 

be used to perturb a piecewise homogenous Discrete Time 

Markov chain model of a dynamic distributed system in 

order to accurately and efficiently predict performance 

degradations. The paper has discussed how a probabilistic 

algorithm can be used for this purpose and shown that it is 

effective in analyzing a simulated grid computing system. 

Experimental results were provided that show the potential 

of this algorithm for efficiently analyzing large, complex 

problems and finding sets of related critical transitions that 

represent complicated circumstances. The perturbation of a 

piece-wise homogenous discrete Markov chain using 

minimal s-t cut set analysis has not been studied before for 

as a practical means for analysis of distributed system 
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dynamics. We believe that this combination of capabilities 

can potentially provide the basis for an operational tool for 

analyzing distributed system behavior and predicting 

performance degradations.  

   To further test the approach described here, we intend to 

carry out experiments on other kinds of distributed systems, 

such as computational clouds. As part of this work, we plan 

to extend the analysis to include minimal s-t separating sets, 

in which combinations of multiple trap states and state 

transitions represent circumstances that may affect system 

performance.  

   An important direction for future work is the investigation 

of other methods that are more effective in finding minimal 

s-t cut sets in directed graphs and can be used on larger, 

more complex problems. For instance, there are alternative 

approaches to probabilistic node contraction, such as [31] 

which could be examined. Another possible method 

involves use of maximum-flow algorithms [21-23] to find s-

t cut sets that identify critical transitions. These algorithms 

find s-t cut sets on the basis of maximum flow and 

minimum capacity. Potentially, maximum-flow algorithms 

could be adapted to find and rank cut sets on the basis of 

their nearness to maximum flow and minimum capacity, 

rather than criteria described here. To enable such rankings, 

the work of [32, 33] could be used. Finally, we are also 

exploring the use of eigensystem analysis of Markov chain 

models as a means to predict performance degradation [5]. 
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